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Abstract. In this paper, we consider convergence properties of a class of penalization

methods for a general vector optimization problem with cone constraints in infinite
dimensional spaces. Under certain assumptions, we show that any efficient point of the cone
constrained vector optimization problem can be approached by a sequence of efficient points

of the penalty problems. We also show, on the other hand, that any limit point of a sequence
of approximate efficient solutions to the penalty problems is a weekly efficient solution of the
original cone constrained vector optimization problem. Finally, when the constrained space

is of finite dimension, we show that any limit point of a sequence of stationary points of
the penalty problems is a KKT stationary point of the original cone constrained vector
optimization problem if Mangasarian–Fromovitz constraint qualification holds at the limit
point.

Key words: Convergence, Efficiency, Level-compactness, Penalty method, Vector optimiza-
tion with cone constraints

1. Introduction and Preliminaries

It is well-known that penalty method is popular and effective for con-
strained optimization problems. Traditional penalty methods use l2 and l1
penalty functions (see, e.g., [7, 8]). Recent interest in lower-order penalty
functions is motivated by the fact that lower-order penalty functions usu-
ally require weaker conditions to guarantee their exactness than the classi-
cal l1 penalty function (see, e.g., [14, 16, 18, 21, 22]).
In scalar optimization, necessary and sufficient conditions were derived for

various exact penalty functions, including l1 exact penalization [2], nonlinear
exact penalization [21] and lower order penalization [16]. These conditions
were expressed in the form of calmness-types conditions of the constrained
optimization problem.
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In vector optimization in finite dimensional spaces, penalty methods
were studied in [14, 20, 23]. Necessary and sufficient conditions were devel-
oped for the exactness of a class of nonlinear penalty functions for con-
strained vector optimization problems [14]. Most recently, for vector
optimization problems with cone constraints in infinite dimensional spaces,
we established an equivalence between (local) calmness property of the
cone constrained optimization problem and (local) exact penalization prop-
erty of a class of penalty functions. This calmness condition was further
applied to derive KKT conditions for a local weakly efficient solution to
the cone constrained vector optimization problem (see [12]).
Convergence analysis for a class of nonlinear penalty methods for con-

strained scalar optimization problems was carried out in [15, 24]. In [13]
we studied the convergence property (via first-order necessary optimality
conditions) of a class of nonlinear penalty methods for constrained multi-
objective optimization problems.
In this paper, we will carry out convergence analysis for the class of pen-

alty methods proposed in [12]. More specifically, under certain assumptions,
we show that any efficient point of the cone constrained vector optimization
problem can be approached by a sequence of efficient points of the penalty
problems. We note that these assumptions are weaker than those used in [14]
for strong duality results. We also show that any limit point of a sequence of
approximate efficient solutions to the penalty problems is a weakly efficient
solution of the original cone constrained vector optimization problem.
Finally, under some conditions, we show that any limit point of a sequence
of stationary points (points that satisfy first-order necessary conditions) of
the penalty problems is a KKT stationary point of the original cone con-
strained vector optimization problem if the Mangasarian–Fromovitz con-
straint qualification holds at the limit point. It is worth nothing that the
Mangasarian–Fromovitz condition is weaker than the linear independence
condition of the gradients of active constraint functions used in [24] even
when the constrained vector optimization problem considered in this paper
reduces to the scalar constrained optimization problem considered in [24].
In the remainder of this section, we present the problem, some related

concepts and notations.
Let X, Y and Z be normed spaces. Let Y� and Z� be the dual spaces of Y

and Z, respectively. Let C � Y be a nontrivial pointed, closed and convex
cone with nonempty interior intC and e 2 intC be fixed. Let K � Z be a
closed and convex cone with nonempty interior intK and k0 2 intK
be fixed. C and K induce orders OC and OK in Y and Z, respectively. That
is, for any yi 2 Y, zi 2 Zði ¼ 1; 2Þ, y1OC y2 iff y2 � y1 2 C and
z1OKz2 iff z2 � z1 2 K. Denote by C� ¼ fk 2 Y� : kðyÞP0;8y 2 Cg and
K� ¼ fl 2 Z� : lðzÞP 0;8z 2 Kg the positive polar cones of C and K,
respectively. Let C0 ¼ fk 2 C� : kkk ¼ 1g.
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DEFINITION 1.1. Let V be a normed space and K1 � V be a cone. We
say that K1 admits a compact base if there exists a compact set K2 � K1

such that 0 62 K2 and K1 ¼ fbk : bP0; k 2 K2g.
Let Y1 � Y. �y 2 Y is called a infimum point of Y1 if (i) there exists a

sequence fyng � Y1 such that yn ! �y; and (ii) y� �y 62 �Cnf0g, 8y 2 Y1.
The set of all infimum points of Y1 is denoted by inf Y1. If
�y 2 ðinfY1Þ \ Y1, then it is called an efficient point of Y1.
Consider the following vector optimization problem with cone constraints

(VP) inf fðXÞ
s.t. x 2 X1;

gðxÞ 2 �K;
when X1 � X is nonempty and closed, f : X! Y, g : X! Z are vector-
valued functions.
Throughout the paper, we assume that kðfðxÞÞ is lower semicontinuous

(l.s.c. for short) on X1 for any k 2 C� and gðxÞ is continuous on X1 unless
stated otherwise.
Denote by X0 the feasible set of (VP), i.e.,

X0 ¼ fx 2 X1 : gðxÞ 2 �Kg:
We assume throughout that X0 6¼ ;. Denote by E 0 the set of infimum
points of (VP), i.e., E 0 ¼ inf fðX0Þ. Let E denote the set of efficient points
of fðX0Þ. E is also referred to as the set of efficient points of (VP). Clearly,
E � E 0.
A point �x 2 X0 is said to be a (weakly) efficient solution to (VP) if

fðxÞ � fð�xÞ 62 �Cnf0gðresp.� intCÞ 8x 2 X0:

A point �x 2 X0 is said to be a local (weakly) efficient solution to (VP) if
there exists a neighbourhood U of �x such that

fðxÞ � fð�xÞ 62 �Cnf0gðresp.� intCÞ 8x 2 X0 \U:

Clearly, a (local) efficient solution of (VP) is a (local) weakly efficient solu-
tion of (VP).

DEFINITION 1.2. Let X2 � X. A function h : X2 ! R1 is said to be level-
compact (level-bounded) on X2 if the set Xt ¼ fx 2 X2 : hðxÞOtg is com-
pact (bounded) for any real number t.
The following function n : Y! R is very useful in the sequel:

nðyÞ ¼ minft 2 R1 : y 2 te� Cg:
The proposition below summarizes some important properties of the func-
tion n.
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PROPOSITION 1.1. [10]. The function n is (stricktly) monotone (in the sense
that y1OCy2 implies nðy1ÞOnðy2Þ and y2 � y1 2 intC implies nðy1Þ< nðy2Þ),
continuous, subadditive and positively homogenous on Y. Moreover,

nðyÞ ¼ sup
k2C0

kðyÞ=kðeÞ 8y 2 Y ð1Þ

and for any y 2 Y and t 2 R1, there holds

nðyþ teÞ ¼ nðyÞ þ t:

Similarly, we can define g : Z! R1 by the formula:

gðzÞ ¼ minft 2 R1 : z 2 tk0 � Kg:
Clearly, the function g has the same properties as n stated in Proposition
1.1.
Consider the penalty problem:

ðPVPa
r Þ inf

x2X1

Faðx; rÞ ¼: fðxÞ þ r½d�KðgðxÞÞ�ae;

where d�Kð�Þ is the distance function of a point to the set �K.
Denote by E 0r the set of infimum points of ðPVPa

r Þ.

2. Convergence Analysis of Efficient Points

In this section, we show, under some conditions, that any efficient point of
the cone constrained vector optimization problem can be approached by a
sequence of efficient points of the penalty problems ðPVPa

r Þ as r! þ1
and any limit point of a sequence of approximate efficient solutions to the
penalty problems is a weakly efficient solution of the original cone con-
strained vector optimization problem.
The following lemma is useful in the sequel.

LEMMA 2.1. Let X2 � X be nonempty and closed and u : X2 ! Y be a vec-
tor-valued function such that kðuÞ is l.s.c on X2 for any k 2 C�. Assume that
there exists x0 2 X2 such that the set A0 ¼ fx 2 X2 : uðxÞOCuðx0Þg is com-
pact. Then, u has an efficient solution on X2.

Proof. It is obvious that X2 can be seen as a subspace of X. Let y 2 Y.
Then the set fx 2 X2 : uðxÞO yg ¼ \k2C�fx 2 X2 : kðuðxÞÞOkðyÞg is closed

in X2 by the l.s.c of kðuÞ for any k 2 C�. Moreover, it can be shown by

contradiction that if �x 2 A0 is an efficient solution of u on A0, then it is
also an efficient solution of u on X2. The conclusion follows immediately
from ([6], Corollary 3.1) (by replacing X and A with X2 and A0, respec-
tively).
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THEOREM 2.1. Assume that

Y� ¼ C� � C�: ð2Þ
and nðfðxÞÞ is level-compact on

X3 ¼ fx 2 X1 : gðxÞ 2 h0k
0 � Kg ð3Þ

for some h0 > 0. Further assume that there exist r0 > 0 and m0 2 R1 such
that

nðfðxÞÞ þ r0d
a
�KðgðxÞÞPm0; 8x 2 X1 ð4Þ

Then, we have
(i) The set E of efficient points of (VP) is nonempty;
(ii) The set E of efficient points of (VP) coincide with the set E 0 of infi-

mum points of (VP), i.e., E ¼ E 0;
(iii) Suppose that 0 < rn " þ1. Then

E � w� limsup
n!þ1

E0rn

where

w� limsup
n!þ1

E 0rn ¼fy 2 Y : 9 a subsequence fnkg of fng

and yk 2 E 0rnk
such that yk weakly converges to yg:

Proof. (i) Suppose that x0 2 X0. Consider the set

X4 ¼ fx 2 X0 : fðxÞOCfðx0Þg
� fx 2 X0 : nðfðxÞÞOnðfðx0ÞÞg
� fx 2 X3 : nðfðxÞÞOnðfðx0ÞÞg:

By the level-compactness of nðfÞ on X3, we see that X4 is nonempty and
compact. Hence, by Lemma 2.1. E 6¼ ;.
(ii) We need only to show that E 0 � E. Let �y 2 E 0. Then, there exists
fxng � X0 such that fðxnÞ ! �y. Clearly, there exists t0 > 0 such that
nðfðxnÞÞOt0. By the level-compactness of nðfÞ on X3, we can assume with-
out loss of generality xn ! �x 2 X0. Thus, for any k 2 C�,

kðfð�xÞÞO lim
n!þ1

kðfðxnÞÞ ¼ kð�yÞ:

It follows that fð�xÞOC �y. On the other hand, from �y 2 E 0,
�y� fð�xÞ 62 Cnf0g. Hence, �y ¼ fð�xÞ. This proves E 0 � E.
(iii) Let �y 2 E. Then, there exists �x 2 X0 such that �y ¼ fðxÞ. Consider

the set

Xn ¼ fx 2 X1 : Faðx; rnÞOCFað�x; rnÞ ¼ fð�xÞg
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It is obvious that Xn 6¼ ; since �x 2 Xn. Now we show that there exists
n0 > 0 such that Xn is nonempty and compact whenever nPn0. We need
only to show that there exists n0 > 0 such that Xn � X3 when nPn0
because nðfðxÞÞOnðfð�xÞÞ; 8x 2 Xn and nðfÞ is level-compact on X3. Note
that Xnþ1 � Xn; 8n. Suppose to the contrary that there exists a subsequence
fnkg of fng such that xnk 62 X3;8k. Then,

fðxnkÞ þ rnkd
a
�KðgðxnkÞÞeOCfð�xÞ:

That is,

ðfðxnkÞ þ r0d
a
�KðgðxnkÞÞeÞ þ ðrnk � r0Þd a

�KðgðxnkÞÞeOCfð�xÞ:
It follows that

ðnðfðxnkÞÞ þ r0d
a
�KðgðxnkÞÞÞ þ ðrnk � r0Þd a

�KðgðxnkÞÞOnðfð�xÞÞ:
By Equation (4), we have

m0 þ ðrnk � r0Þd a
�KðgðxnkÞÞOnðfð�xÞÞ:

As a result,

d a
�KðgðxnkÞÞO

nðfð�xÞÞ �m0

rnk � r0
:

Thus,

lim
k!þ1

d�KðgðxnkÞÞ ¼ 0;

implying gðxnkÞ 2 h0k0 � K when k is large enough. That is, xnk 2 X2 when
k is large. A contradiction arises. Hence, there exists n0 > 0 such that Xn is
nonempty and compact whenever nPn0. Consequently, by Lemma 2.1,
there exists �xn 2 Xn, which is an efficient solution to (PVPrn). Note that
f�xng � Xn0 ; nPn0 and Xn0 is compact. We can assume without loss of gen-
erality that �xn ! x�. Then, from

fð�xnÞ þ rnd
a
�Kðgð�xnÞÞeOCfð�xÞ; ð5Þ

We can show as arguing above that

d�Kðgðx�ÞÞ ¼ 0:

Thus, x� 2 X0. Furthermore, from Equation (5), we have

fð�xnÞOfð�xÞ:
Therefore,

kðfð�xnÞÞOkðfð�xÞÞ 8k 2 C�:

As a result,

kðfðx�ÞÞO lim
n!

inf
þ1

kðfð�xnÞÞOkðfð�xÞÞ 8k 2 C�:
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Hence,

fðx�ÞOfð�xÞ:
On the other hand, fð�xÞ 2 E. Consequently,

fðx�Þ ¼ fð�xÞ: ð6Þ
For simplicity, let

�yn ¼ fð�xnÞ þ rnd
a
�Kðgð�xnÞÞe: ð7Þ

Then, from Equation (5), we get

kðfð�xnÞÞOkð�ynÞOkðfð�xÞÞ 8k 2 C�;

implying

lim sup
n!þ1

kð�ynÞOkðfð�xÞÞ; lim inf
n!þ1

kð�ynÞPkðfðx�ÞÞ:

This together with Equation (6) yields

lim
n!þ1

kð�ynÞ ¼ kðfð�xÞ ¼ kðfðx�ÞÞ 8k 2 C�:

As Equation (2) holds, so we further have

lim
n!þ1

lð�ynÞ ¼ lðfð�xÞÞ ¼ lðfðx�ÞÞ 8l 2 Y�:

That is, �yn weakly converges to fð�xÞ. The proof is complete. (

Remark 2.1. (a) If C is a normal cone, then Equation (2) holds (see, e.g.,
[17]).
(b) If Y is of finite dimension and f is continuous, then we can show

from Equations (5) and (7) that f�yng is bounded. Otherwise, assume with-
out loss of generality that �yn ! þ1 and �yn=k�ynk ! y0 6¼ 0. Then, from
Equations (5) and (7), we deduce that

fð�xnÞ=k�ynkOC �yn=k�ynkOCfð�xÞ=k�ynk:
Passing to the limit as n! þ1, we obtain 0OCy0OC0. By the pointedness
of C, we conclude that y0 ¼ 0. A contradiction arises. So we can assume
without loss of generality that �yn ! y�. Again, from Equations (5) and (7),
we have

fð�xnÞOC �ynOCfð�xÞ:
Passing to the limit, we get

fðx�ÞOCy
�OCfð�xÞ:

This together with Equation (6) gives y� ¼ fð�xÞ ¼ �y. Hence, statement (iii)
of Theorem 2.1 holds without condition Equation (2).
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(c) It can be easily checked that nðfÞ is level-compact (level-bounded) on
X3 if and only if the set fx 2 X3 : fðxÞOCteg compact (bounded) for any
t 2 R1 because fðxÞOCte if and only if nðfðxÞÞOt.
(d) Theorem 2.1 corresponds to Theorem 2.12 in [14].

If both X and Y are finite dimensional spaces and f is continuous, then
Theorem 2.1 can be stated as the following result.

THEOREM 2.2. Assume that X and Y are both finite dimensional, f and g
are continuous on X1. Further assume that Equation (4) holds for some
r0 > 0 and m0 2 R1 and nðfÞ is level-bounded on X3 (defined by Equation
(3)) for some h0 > 0.
Then, for any sequence 0 < rn " þ1,

; 6¼ E ¼ E 0 � limsup
n!þ1

Ern ;

where E;E0 are as in Theorem 2.1 and

limsup
n!þ1

Ern ¼fy 2 Y : 9 a subsequence fnkg of fng

and yk 2 E 0rnk
such that yk converges to yg:

Proof. It follows immediately from Theorem 2.1 and statement (b) of
Remark 2.1. (
Some sufficient conditions for the level-compactness of nðfÞ on X3 for

some h0 > 0 is stated in the following lemma.

LEMMA 2.2. If one of the following conditions holds, then there exists
h0 > 0 such that nðfÞ is level-compact on X3 (defined by Equation (3)).
(i) nðfÞ is level-compact on X1;
(ii) hðxÞ ¼ maxfnðfðxÞÞ; gðgðxÞÞ; 0g is level-compact on X1;
(iii) there exists h0 > 0 such that X3 is compact.

Proof. The proof of the conclusion under condition (i) or (iii) is obvious.
Now we prove the conclusion under condition (ii). Let h > 0 and a 2 R1.
Then, the set

A ¼: fx 2 X1 : nðfðxÞÞOa; gðxÞ 2 hk0 � Kg � fx 2 X1 : nðfðxÞÞ
Oa; gðgðxÞÞOhg � fx 2 X1 : hðxÞOmaxfa; hgg ¼: B:

By (ii), the set B is compact. It is obvious that nðfÞ is lower semicontinuous
on X1. It follows that A is closed. Hence, A � B is compact. This shows
that the h0 in X3 can be any positive real number. h

Analogous to Lemma 2.2, we have the following result when X is a finite
dimensional space.
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LEMMA 2.3. Assume that X is finite dimensional. If one of the following
conditions holds, then there exists h0 > 0 such that nðfÞ is level-bounded on
X3 (defined by Equation (3)).
(i) lim

x2X1;kxk!þ1
nðfðxÞÞ ¼ þ1;

(ii) lim
x2X1;kxk!þ1

maxfnðfðxÞÞ; gðgðxÞÞ; 0g ¼ þ1;

(iii) there exists h0 > 0 such that X3 is compact.

Proof. It is known from [19] that a real-valued function f0 defined on a
subset X1 of a finite dimensional space X is level-bounded if and only if
limx2X1;kxk!þ1 f0ðxÞ ¼ þ1. The conclusion can be proved similarly to that

of Lemma 2.1. h

The next two theorems follow directly from Theorem 2.1 and Lemma
2.2 as well as Theorem 2.2 and Lemma 2.3, respectively.

THEOREM 2.3. Assume that Equation (2) and one of three conditions in
Lemma 2.2 hold. Moreover, there exist r0 > 0 and m0 2 R1 such that Equa-
tion (4) holds. Then the conclusion of Theorem 2.1 holds.

THEOREM 2.4. Assume that X and Y are both finite dimensional, f and g
are continuous on X1. Further assume that Equation (4) holds for some
r0 > 0 and m0 2 R1 and one of the three conditions in Lemma 2.3 holds.
Then the conclusion of Theorem 2.2 holds.
The next proposition shows that each limiting point of a sequence of ap-

proximate efficient solutions to the vector penalty problems is a weakly effi-
cient solution of the original cone constrained vector optimization problem.

PROPOSITION 2.1. Assume that f and g are both continuous on X1 and
0 < �n ! 0 and 0 < rn ! þ1. Suppose that each �xn 2 X1 is an �ne-efficient
solution, i.e.,

Faðx; rnÞ � Fað�xn; rnÞ 62 ��ne� C; 8x 2 X1: ð8Þ
Then, any limiting point of f�xng is an efficient solution to (VP).

Proof. Suppose that �x is a limiting point of f�xng and assume without loss
of generality that �xn ! �x. Let x0 2 X0. Then, by Equation (8), we have

fðx0Þ � fð�xnÞ � rnd
a
�Kðgð�xnÞÞe 62 ��ne� C;8n: ð9Þ

Thus,

nðfðx0Þ � fð�xnÞÞ � rnd
a
�Kðgð�xnÞÞP� �n:
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That is,

d a
�Kðgð�xnÞÞO

nðfðx0Þ � fð�xnÞÞ þ �n
rn

:

Passing to the limit as n! þ1, we obtain d�Kðgð�xÞÞ ¼ 0. Hence,
gð�xÞ 2 �K and �x 2 X0. Furthermore, from Equation (9), we deduce that

fðx0Þ � fð�xnÞ 62 ��ne� C; 8n:
That is,

nðfðx0Þ � fð�xnÞÞ > �n; 8n:
Passing to the limit as n! þ1, we get

nðfðx0Þ � fð�xÞÞP0:

It follows that fðx0Þ � fð�xÞ 62 �intC. By arbitrariness of x0 2 X0, we con-
clude that �x is a weakly efficient solution to (VP).

3. Convergence Analysis via First-Order Optimality Conditions

Throughout this section, we assume that X is a Banach space, Y and Z are
Hilbert spaces and Z is finite dimensional, C� admits a weak�-compact
base, X1 � X is nonempty, closed and convex, f and g are continuously dif-
ferentiable on X.
In this section, we carry out convergence analysis via first-order neces-

sary optimality conditions. Specifically, we show that any limit point of a
sequence of points that satisfy first-order necessary optimality conditions
of the penalty problems satisfies (KKT-type) first-order conditions of the
orginal cone constrained vector optimization problem if the Mangasarian–
Fromovitz constraint qualification holds at the limit point.

3.1. OPTIMALITY CONDITIONS FOR PENALTY PROBLEMS

In this subsection, we derive optimality conditions for a local weakly efficient
solution to the penalty problem ðPVPa

r Þ. Note that the penalty function is
not differentiable when a 2 ð0; 1Þ or even not locally Lipschitz when
a 2 ð0; 1Þ. We will apply the Ekeland’s variational principle for vector-valued
functions developed in [4] to derive necessary optimality conditions for
ðPVPa

r Þ:
The following vector Ekeland’s variational principle follows immediately

from ([4], Corollary 2.1 and Lemma 2.3 (iii)).

LEMMA 3.1 Let h : X! Y be a continuous vector-valued function and
X2 � X be nonempty and closed. Let � > 0 be a scalar. Suppose that �x 2 X2

satisfies
(a) hðxÞ � hð�xÞ þ �e 62 �C n f0g;
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(b) there exists a real number m0 such that

m0eOCy� fð�xÞ; 8y 2 ðfð�xÞ � CÞ \ fðX2Þ:
Then, there exists x� 2 X2 such that
(i) hðx�ÞOChð�xÞ;
(ii) kx� � �xkO

ffiffi

�
p

;
(iii) hðxÞ � hðx�Þ þ

ffiffi

�
p
kx� x�ke 62 �C; 8x 2 X2 n fx�g:

Let x 2 X1. Denote by TX1
ðxÞ and NX1

ðxÞ the tangent cone and normal
cone of X1 at the point x, respectively.
The next lemma is useful in deriving optimality conditions for ðPVPa

r Þ.

LEMMA 3.2 [11]. Let h : X! Y be a locally Lipschitz vector-valued func-
tion. Suppose that �x is a local weakly efficient solution to the vector optimi-
zation problem:minx2X1

hðxÞ. Then, there exists k 2 C0 such that

0 2 @ðkðhÞÞð�xÞ þNX1
ð�xÞ, where @ is the Clarke subdifferential.

PROPOSITION 3.1. Let �xr 2 X1 be a local weakly efficient solution to
ðPVPa

r Þ. Suppose that the following condition holds:

ðCÞ 9 �dr 2 TX1
ð�xrÞsuch that gð�xrÞ þ rgð�xrÞ �dr;2 �intC: ð10Þ

Then, there exist kr 2 C� n f0g;lr 2 Z� with

lr ¼ arkrðeÞ½da�2
�K ðgð�xrÞÞ�ðgð�xrÞ � P�Kðgð�xrÞÞÞrgð�xrÞ; if �xr 62 �X0; ð11Þ

lr 2 K�; lrðgð�xrÞÞ ¼ 0; if �xr 2 X0; ð12Þ
where P�KðyÞ is the projection of y onto �K, such that

0 2 krðrfð�xrÞÞ þ lrðrðgð�xÞÞÞ þNX1
ð�xrÞ: ð13Þ

Proof. Since �xr is a local weakly efficient solution to ðPVPa
r Þ, there exists

d > 0 such that �xr is a weakly efficient solution of the vector-valued func-
tion Faðx; rÞ on

Ud ¼ fx 2 X1 : kx� �xkOdg:
That is,

Faðx; rÞ � Fað�xr; rÞ 62 �intC;8x 2 Ud: ð14Þ
As Faðx; rÞ is continuous (in x) on X1, we can choose d > 0 such that, for
some real number c,

ceOCFaðx; rÞ � Fað�xr; rÞ;8x 2 Ud: ð15Þ
Let

snðxÞ ¼ fðxÞ þ r½d2�KðgðxÞÞ þ 1=n2�a=2e:
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Then, It is easy to see that there exists 0 < �0n # 0 such that

0OCsnðxÞ � Faðx; rÞOC�ne;8x 2 X1: ð16Þ
It follows from Equations (14) and (16) that

snðxÞ � snð�xÞ þ �0ne 62 � intC; 8x 2 Ud:

Let �n ¼ 2�0n. Then, showing by contradiction, we have

snðxÞ � snð�xrÞ þ �ne 62 �C;8x 2 Ud: ð17Þ
Clearly, 0 < �n # 0 as n! þ1. Assume without loss of generality that

ffiffiffiffi

�n
p

< d; 8n: ð18Þ
Taking X2 ¼ Ud, the combination of Equations (15), (16) and (17) implies
that all the conditions of Lemma 3.1 hold (with the function h replaced by
sn). By Lemma 3.1, there exists xn 2 Ud such that

kxn � �xrkO
ffiffiffiffi

�n
p

; ð19Þ

snðxÞ � snðxnÞ þ
ffiffiffiffi

�n
p kxn � �xrke 62 �C;8x 2 Ud n fxng: ð20Þ

By Lemma 3.2 and the chain rule for the Clarke subdifferential, there exists
k0n 2 C0 such that

0 2 @ðk0nðsnÞÞðxnÞ þ
ffiffiffiffi

�n
p

k0nðeÞBþNUdðxnÞ; ð21Þ
where B ¼ fv 2 X� : kvkO1g. By Equations (18) and (19), we have

NUdð�xnÞ ¼ NX1
ðxnÞ: ð22Þ

Note that

k0nðsnðxÞÞ ¼ k0nðfðxÞÞ þ rk0nðeÞ½d2�KðgðxÞÞ þ 1=n2�a=2;
d2�Kð�Þ is C1;1 (see, e.g., [1,9]) and

rd2�KðyÞ ¼ 2ðy� P�KðyÞÞ; 8y 2 Y:

Hence, sn is continuously differentiable, and

rk0nðsnÞðxnÞ
¼ k0nðrfðxnÞÞ þ ra=2k0nðeÞ½d2�KðgðxnÞÞ þ 1=n2�a=2�1rd2�KðgÞðxnÞ
¼ k0nðrfðxnÞÞ þ ra=k0nðeÞ½d2�KðgðxnÞÞ þ 1=n2�a=2�1ðgðxnÞ
� P�KðgðxnÞÞÞðrgðxnÞÞ: ð23Þ

Recall that C� admits a weak�-compact base and that k0n 2 C0. Suppose
that C1 � C� is a weak�-compact base of C�. Then, there exist
0 < tn 2 R1

þ and k00n 2 C1 such that k0n ¼ tnk
00
n. Assume without loss of gener-

ality that w� � limn!þ1k00n ¼ k0 2 C1, where w�-lim denotes weak � conver-
gence. Obviously, k0 6¼ 0. Furthermore, limn!þ1 tn ¼ t0 > 0: Thus, we can
assume without loss of generality that

648 X.X. HUANG ET AL.



w� � lim
n!þ1

k0n ¼ t0k0 ¼: kr 2 C�nf0g: ð24Þ

Let

l0n ¼ rak0nðeÞ½d2�KðgðxnÞÞ þ 1=n2�a=2�1 ðgðxnÞ � P�KðgðxnÞÞÞ: ð25Þ
Then, from Equations (21)–(23), we deduce that for each n, there exists
nn 2 B such that

k0nðrfðxnÞÞ þ l0nðrgðxnÞÞ þ
ffiffi

�
p

nk
0
nðeÞnn 2 �NX1ðxnÞ: ð26Þ

Consider the following two cases.
ðaÞ �xr 62 X0: Let

lr ¼ lim
n!þ1

l0n;

giving rise to Equation (11). Taking the limit in Equation (26) as n! þ1,
we obtain Equation (13).
ðbÞ �x 2 X0: We first show that fkl0nkg is bounded. Otherwise, assume

without loss of generality that kl0nk ! þ1 and

l0n=kl0nk ! l0r 6¼ 0 ð27Þ
(which is true since Z is finite dimensional). Dividing Equation (26) by
kl0nk and passing to the limit as n! þ1, we obtain

l0rðrgð�xrÞÞ 2 �NX1ðxrÞ: ð28Þ
Note from Equation (25) that

l0n
kl0nk

¼ gðxnÞ � P�KðgðxnÞÞ
kgðxnÞ � P�KðgðxnÞÞk

: ð29Þ

Thus, for any v 2 �K
ðgðxnÞ � P�KðgðxnÞÞÞðvÞ ¼ ðgðxnÞ � P�KðgðxnÞÞÞðv� P�KðgðxnÞÞÞO0

by the basic properties of a projection map onto a closed convex cone in a
Hilbert space. Thus, ðl0n=kl0nkÞðvÞO0. As a result, l0rðvÞO0. Hence

l0r 2 K�: ð30Þ
Note also that

ðgðxnÞ � P�KðgðxnÞÞÞðgðxnÞÞ
¼ ðgðxnÞ � P�KðgðxnÞÞÞðgðxnÞ � P�KðgðxnÞÞÞP0:

This combined with Equations (29) and (27) yields l0rðgð�xrÞÞP0: On the
other hand, from x 2 X0 and Equation (30), we have l0rðgð�xrÞO0: Hence,

l0rðgð�xrÞÞ ¼ 0: ð31Þ
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Moreover, the combination of Equations (10) and (31) yields

l0rðrgð�xrÞÞðdrÞÞ ¼ l0rðgð�xrÞ þ rgð�xrÞðdrÞÞ < 0: ð32Þ
On the other hand, Equation (28) and the fact that dr 2 TX1ð�xrÞimply that

l0rðrgð�xrÞÞðdrÞÞP0;

contradicting Equation (32). Hence, fl0ng is bounded. Assume without loss
of generality that l0n ! lr: Taking the limit in Equation (26) as n! þ1,
we get Equation (13). Arguing as above for l0r 2 K� and l0rðgðxrÞÞ ¼ 0, we
can show that Equation (12) holds. The proof is complete. (

3.2. CONVERGENCE OF STATIONARY POINTS OF PENALTY PROBLEMS

In this subsection, we show under some conditions that any limit point of
the points that satisfy the conditions stated in Proposition 3.1 is a KKT
point of the original (VP).

DEFINITION 3.1. Let �x 2 X0. �x is said to satisfy the KKT condition if
there exists ðk; lÞ 2 C0 � K� such that

0 2 kðrfð�xÞÞ þ lðrgðxÞÞ þNX1ð�xÞ; ð33Þ

lðgð�xÞÞ ¼ 0; ð34Þ

DEFINITION 3.2. Let �x 2 X0. We say that the Mangasarian–Fromovitz
constraint qualification (MFCQ) holds at �x if there exists d 2 TX1ð�xÞ such
that gð�xÞ þ rgð�xÞðdÞ 2 �intK:
Now we present the main results of this section.

THEOREM 3.1. Let 0 < rn " þ1 and �xn 2 X1. Suppose that there exists
M 2 R1 such that

fð�xnÞ þ rnd
a
�Kðgð�xnÞÞeOCMe: ð35Þ

Suppose that �x is limit point of f�xng. Then, �x 2 X0. Assume that MFCQ
holds at �x. Then condition ðCÞ (with r replaced by rn in Proposition 3.1)
holds when n sufficiently large. Suppose that the first-order necessary con-
dition Equation (13) for ðPVPa

rnÞ holds when n is large. Then �x is a KKT
point of (VP).

Proof. Assume without loss of generality that �xn ! �x: The assertion that
�x 2 X0 follows immediately from Equation (35). It is obvious that condi-
tion ðCÞ holds when n is sufficiently large if MGCQ holds at �x. By the first
order necessary condition for ðPVPa

rnÞ, there exist k0n 2 C�nf0g and l0n with
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l0n ¼ arnk
0
nðeÞ½d a�2

�K ðgð�xnÞÞ�ðgð�xnÞ � P�Kðgð�xnÞÞÞrgð�xnÞ; if �xn 62 �X0;

l0n 2 K�; l0nðgð�xnÞÞ ¼ 0 if gð�xnÞ 2 X0

such that

0 2 k0nðrfð�xnÞÞ þ l0nðrðgð�xnÞÞÞ þNX1
ð�xnÞ:

Let kn ¼ k0n=kk
0
nk and ln ¼ ln=kk0nk=. Then, kn 2 C0 and

ln ¼ arnknðeÞ½da�2
�K ðgð�xnÞÞ�ðgð�xnÞ � P�Kðgð�xnÞÞÞrgð�xnÞ; if �xn 62 �X0;

ð36Þ

ln 2 K�; lnðgð�xnÞÞ ¼ 0; if gð�xnÞ 2 X0 ð37Þ
and

0 2 knðrfð�xnÞÞ þ lnðrðgð�xnÞÞÞ þNX1
ð�xnÞ: ð38Þ

Arguing as in the proof of Proposition 3.1, we can show that flng is
bounded and that there exists a subsequence of fkng which converges to
k0 2 C0nf0g: Assume without loss of generality that kn ! k0 and ln ! l0:
Taking the limit in Equation (38) as n! þ1 , we obtain

0 2 k0ðrfð�xÞÞ þ l0ðrðgð�xÞÞÞ þNX1
ð�xÞ: ð39Þ

Consider the following two cases.
(i) There exists a subsequence fnkg of fng such that xnk 2 X0;8k: Then,

from Equation (37) (with n replaced by nk), we have l0 2 K� and
l0ðgð�xÞÞ ¼ 0.

(ii) �xn 62 X0 when nPn0 for some n0 > 0: Then, ln is defined by Equation
(36). Note that ðgð�xnÞ � P�Kðgð�xnÞÞÞðgð�xnÞÞ ¼ 0: It follows that
lnðgð�xnÞÞ ¼ 0: Thus, l0ðgð�xÞÞ ¼ 0: Note also that for any v 2 �K;
ðgð�xnÞ � P�Kðgð�xnÞÞÞðvÞ ¼ ðgð�xnÞ � P�Kðgð�xnÞÞÞðv� gð�xnÞÞO0: It fol-
lows that ln 2 K�: Hence, l0 2 K�:

Let k ¼ k0=kk0k and l ¼ l0=kk0k: Then ,k 2 C0;l 2 K� and Equation (34)
holds. Moreover, from Equation (39), we get Equation (33). Hence, �x is a
KKT Point of (VP).
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